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ABSTRACT

Because the Earth is not a rigid homogeneous sphere, the path of a near-
Earth satellite will deviate from a perfect ellipse. If accurate measure-
ments of satellite orbits are available, one can hopefully deduce parameters
from the observed orbital motions which model geophysical features. This
dissertation gives the results and techniques to estimate one nonstation-
ary variation in the Earth's gravity field--the principal lunar semi-diurnal
(My) ocean tide.

Since the ocean tides cause periodic perturbations with periods greater
than a week in the evolution of the Keplerian elements of a satellite,
the mean Keplerian elements (osculating Keplerian elements less all short
period oscillations) are studied. . To date, no investigator has produced
mean Keplerian elements accurate enough to observe the small variations
caused by the My ocean tides. To solve this problem, approximate analytical
transformations have been applied which account for large first-order
effects. Elimination of very high frequency effects 1s accomplished with
the aid of an ideal low-pass filter. Precise transformations are only part
of the solution, however. Accurate orbits significantly affected by ocean
tides must be available. Fortunately, two such satellite orbits were
obtained--1967-92A, a U. S. Navy satellite, and the NASA satellite, GEOS-3.

Two terms in the harmonic expansion of the M, global tide height can be
observed. Estimates of:these coefficients have been-obtained. These
estimates are somewhat smaller than recent published values obtained from
numerical solutions of Laplace tidal equations.

Application of the satellite derived M; ocean tide coefficients to the
problem of the deceleration of the lunar mean longitude yiels an estimate
of -27.4 arc seconds/century2 which is in close agreement with recent
analyses of ancient eclipses and modern transit data. Because the entire
tidal deceleration of the lunar mean longitude can be accounted for by the
ocean tide model obtained in this study, it can be inferred that the solid
tide phase lag must be less than 1°.

Knowledge of these important quantities in geophysics and space science,

as well as the method developed to extract this information from satellite
orbits, are considered important contributions of this study.
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1. INTRODUCTION

The last twenty years of space exploration since the launch of Sputnik
I in 1957 has revolutionized the science of geophysics. With the very
first transmitted satellite data, it was éossible to determine precisely
the Earth's oblateness for the first time. Improvements in the knowledge
of long wavelength features of the geopotential have been continuous.
Today, geopotentiai spherical harmonic coefficients to degree and order
(30, 30) are being estimated or improved. Atmospheric density studies
obtained from satellite qrbit anaiysis have also resulted in major_improve-
ments in man's knowledge of the structure of the atmosphere. By the late
1960's orbits of geodetic and navigation satellites were being analyzed
at thé meter level for such geodetic phenomena as polar motion and non-
stationary variations in the Earth's gravity field. This dissertation
gives the results and techniques used to estimate one such nonstationary
variation in the Earth's gravity field-ocean tides from satellite orbit

perturbations.

.If the Earth were a rigid homogeneous sphere, satellite orbits due to
this central force field would be perfect ellipses. However, the actual
distribution of the Earth's mass is nonhomogeneous which gives rise to a
rotating noncentral force field. Since the Earth is not a rigid body,
tidal motion of the oceans and the deformation of the Earth's core and
mantle create further complications. These phenomena plus the gravita-
tional attraction of the other celestial bodies affect the satellite

orbits and cause their paths to deviate from ellipses.

If accurate measurements of satellite orbits are available, one may hope

to deduce these geophysical features from the observed orbital motioms.



The problem investigated in this study is the deduction of the following

information from the observation of the orbits of 1967-92A and GEOS-3:

1. The M, tidal parameters which describe the semi-diurnal motion of
the global ocean tide.

2. The rate of slowing down of the orbital motioﬁ of the Moon through
the centuries because of résonance between the lunar motion and

the motion of the Mz ocean tide.

R. R. Newton (1965, 1968) and Kozai (1968) independently attempted
solutions from satellite ephemeriS'data for the parameters* which des-
cribe tﬁe solid Earth deformations due to the attraction of the Sun
and Moon. Since these nonstationary disturbaﬁces of the Earth's potential
perturb the orbits periodically with periods greater than a week, the
slowiy varying features of satellite motion must be analyzed to recover
them. Newton pioneered a purely numerical techniqﬁe for isolation of the
long-periodic effects of the Lo§e numbers, while Kozal used traditional
analytic methods. Newton obtained a precision of 0.5 to 1.0 arc second
in the inclinations of his precessing Kepler ellipses. He rejected the
possibility of ocean tides.corrupting his results since he considered

that it "contributed little to the total potential...The ocean tides
are rather random in phase and almost cancel when averaged over the
entire Earth at any particular instant."_ Kaula (1969) tried to explain
the large differeﬁces in Newton's results by a latitude dependence of
the solid Earth tide effect. Douglas et al. (1972, 1974) convincingly

showed an apparent latitude dependence by obtaining second degree'Love

* Love numbers named after A. E. H. Love.



numbers for GEOS-1 and GEOS-2 of 0.22 and 0.31, respectively. Lambeck
et al. (1974) clarified this entire squect when they showed that the
effects of the ocean tides were not at all random but were systematically

similar to the effects of the solid tide. The ocean tides are functioms
of longitude and latitude and they were responsible for a large portion

of the difference between the GEOS-~1l and GE0S-2 results.

Douglas et al. (1972, 1974) obtained improved mean elements by first
removing large perturbations in the elements due to low degree and order
terms of the geopotential before averaging. Since these parameters
reveal themselves as periddic variations in the elements, their removal
protects one against leaving behind residual effects due to averaging
over only a fraction of a period. The critical parameter_which scientists
have tried to recover is the lag in the response of deformation of the
Earth to the attraction of'che Sun and Moon. This lag is a very impor-
tant measure of the anelasticity of the Earth's core and mantle (Kaula,
1968). Because.of the neglect of ocean tide effects, progress has been
limited in the estimation of the solid tide phase lag of the Earth from
satellite orbit analyses. Valués ranging from 0° to 5° have been suggested
for the phase lag from tiltmeter observations and satellite orbit analyses.
Results of seismological data which yield information about rates of decay
of free oscillations of the Earth at periods of about 1 hour lead oné to
believe that the lag should be between 0° and 1°.

Differencing common points of orbits determined from successive two-day
data spans have shown that conventional orbit determination results are
now accurate to a few meters (1 meter & 0.03 arc second) along the direc-
tion of motion (alomg-track). If the along-track positions are known to

this accuracy, then the semi-major axes should be known to the centimeter
3



level. However, no one has yet demonstrated centimeter accuracies in their
mean elements. This inability to produce meaﬁ elements that have the same
accuracy as osculating elements was the initial impetus for this endeavor.
It was believed that if mean orbital elements could be obtained with a
precisioﬁ of 0.01 arc second in the inclination or node (normally out-of-
plane components are known ﬂetter than the along-track components), then
it would be possible to solve for meaningful ocean tide parameters. This
is advantageous since no modeling of the dynamics of the oceans would be
required. Lambeck et al. (1974) attemptea a solution of the ocean tide
parameters affecting satellite orbits, but conciuded that their results
were "not significant" because of the inadequaté precision of the orbital

data.

Precise transformations are only part of the solution, however. Accu-
rate orbits significantly affected by ocean tides must be available.
Fortunately, two such satellite orbits were obtained -~ 1967-92A, a U. S.
Navy Navigation.Satellite; and the NASA satellite, GEOS-3. Improved
transformations have been developed and the 1967-92A and GEOS-3 orbital
data have been analyzed. Even though only a few ocean tide parameters
can be obtained from satellite orbit perturbatioms, they have a£ extremely

important application to the tidal acceleration of the Moon.

In 1975 Lambeck applied the ocean tide theory developed in 1974 to the
problem of the orbital evolution of the Moon. Using the results of
numerical solutions to Laplace tidal equations, Lambeck obtained a
value of =35 arc seconds/century2 for the luna; N (acceleration of lunar
mean longitude) which seemed to agree well with observations of ancient

eclipses. Based on these results, Lambeck argued that since the predicted



value of N of the Moon from ocean fides matched the observed value of N,
then the effect of the solid tide was small. This supports the argument
that the solid tide phase lag Cﬁsolid is proportional to lag angle) must
be close to zero. A subsequent analysis of ancient eclipse data (Muller
1974) and analysis of transits of Mercury (Morrison and Ward 1975) has
shown the proper value of ﬁmoon to be =26 to -28 arc geconds/centuryz.

Not only are the ocean tide results obtained in this study in reasonable
agreemeﬁt with numerical solutions of Laiiace tidal equations, but they
also yield a value of ﬁmoon’ due to ocean tides, of =27.4 arc seconds/
.centuryz —— a value in close agreement with the recent results of Muller,
and Morrison and Ward. This result is also supported by Kuo (1977) who
estimates.the solid tide phase lag to be less than 1.0° based on data
from a network of gravimeters placed along a parallel of latitude across
the United States. A variation of 0.5° in the solid tide phase lag

causes the N results to change by no more than 1 arc second/centuryz.

Knowledge of these important quantities in geophysics and space science,
as well as the method developed to extract this information from satellite

orbits, are considered important contributions of this study.

Chapter 2 revieﬁs the equa;ions derived by Kaula (1966) to eliminate the
major perturbations due to the geopotential field, and discusses some of
their physical interpretations. The advantage of using low-pass filtering
before the averaging process is introduced, and several examples of ideal

and actual mean element results are given.

The origin and representation of ocean tidal phenomena are discussed in
detail in Chapter 3. The historic work of Doodson (1921) will be empha-
sized as well as the recent efforts of Hendershott and Munk (1970), Lambeck

5



et al. (1974). The appropriate potential function in terms of Keplerian
elements fo; ocean tide attractions is given and its long period charac-

teristics are discussed.

The solid tide attractiom is disqussed in Chapter 4, and its corres- |
ponding potential is given. Expressions of this potential function in
- terms of the ecliptic Keplerian elements of the disturbing body (as
opposed to Earth equatorial elsnents), which are derived in appendix I,

are stated. The frequency equivalence between ocean tide and solid tide

satellite perturbations are shown.

Chapter 5 discusses the data processing of the inclination and nodal
perturbations of the two satellites 1967-92A and GEOS-3. Comparisons are
made between observed orbit variations and predictions from numerical
tide models, showing observational equations derived from each sequence
of orbital elements. These observations are then reduced with a standard
least-squares aigorithm to yield estimates.of the ocean tide parameters.
These es;imates, obtained entirely from satellite orbit perturbations,

are then compared with current numerical solutions of Laplaces tidal

equations.

The ocean tide results are applied to the lunar orbit evolution problem
in Chapter 6. Comparisons are made between satellite ocean tide predic-
tions of the lunar N and the observations of N from ancient eclipse and

Mercury transit data.



2. GENERATION AND UTILIZATION OF MEAN KEPLERIAN ELEMENTS
2.1 Osculating Keplerian Elements

In order to observe the behavior of a history of a perturbed satellite
ephemeris and compare this ephemeris with the theoretical history of an
unperturbed one, an appropriate potential function must first be con-
structed and differential equations be drawn up in terms of suitable
coordinates. By far the major cause of the deviation of motion of a
near-Earth satellite from the theoretical path of two-body motion is the
nonspherical geopotential field of the Earth. To be able to observe
orbital variations of a few meters due to phenomena, such as tides, one
must first remove the effects of the geopotential which range in magni-
tude up to tens of kilometers. In addition, the attractions of other

disturbing celestial bodies must also be modeled, since their effects
also can be many times larger than those geophysical parameters which,
hopefully, will be recovered.: One particular choice of coordinates which
is well suited for such investigations is the set of osculating Keplerian
elements. Osculating Keplerian elements are coordinates that instan--
taneouély define the Kepler ellipse obtained from the satellite's
position and velocity. Since the potential field is noncentral, these
elements will continuously change. The Earth's attraction deviates only
slightly from a central force field and, therefore, the osculating
ellipse will retain most of the attributes of tﬂe Kepler ellipses. Also,
use of the Keplerian eléments is very beneficial because of the stable
behavior of the out-of-plane elements (inclination and right ascension of
the ascending node). Errors in energy (semi-major axis) will only affect

the motion along the direction of motion (along-~track). The symbols used



for these osculating elements throughout this report are as follows:

a semi-major axis

e - eccentricity

i - inclination

Q =~ right ascension of ascending nodé

w = argument of perigee

M

mean anomaly

It will be seen that such forms of the potential would be rather
expensive to use in integrating the orbit numerically on a computer, but
they are very useful to use when analyzing the major amplitudes and
frequencies which perturb the motion. The sténdafd set of three second-
order differential equations in terms of inertial Cartesian elements
defining the motion can be transformed into a.set of six first-order
differential equations in terms of these new va;iables which is usually
referred to as Lagrange planetary equations. The derivation can be found
in many standard téxtbooks.on celestial mechanics, such as "'Brown and
Shook (1933) and Brouwer and Clemence (1961), and the results of tﬁis
transformation are given here. For motion in a conservative. force field,

the differential equations of motion can be obtained from a scalar,

normally called the potential. Let the ﬁotential function U be given as

- '
U ?a + R . (2.1)

where E% is the total energy due to two-body attraction of the Earth and

R represents all other effects, such as geopotential and third-body

attractions. Then the set of six first-order equations is given by



da _ 2 3R’

dt  Na oM

de _1-e® 3R _ (1-e2)% ‘3R
dt N2 M Na% o

di _ cos 1 R _ 1 R
dt Naz(l-ez)%sin'i ow ﬁgz(l-ezjgsin i duw

@ _ _1 R
dt Naz(l-ez)gsin 1 3i

(2.2)

dt Na‘(1-e®)%sin i i Nale 3e

do _ _ =~ cos 4 ®, (1-eDH" 2x

dM _ . _1-e® 3R _ 2 3R

_aN

dt Na“e Jde Na 23a

where N = vYu/,3 ,

u is the graVitational constaﬁt G times mass of Earth. Nonconservative

contributions must be included in (2.2) in terms of force components.

2.2 Keplerian Potential Function for Geopotential

Kaula (1961, 1966) has transformed the various potential func-
tions into very useful forms as harmonic expansions in terms of the

fundamental frequencies of the motion Q, ©, M. Let V, stand for the

fm

degree . and order m terms of the potential. Then

© [ ® [} N L ®
MDD DRAND M) Y ::j’ D Fymp (D Xz Cupq @ Stmpq (@100

=2 m=g p=0 g

(2.3)



L-m even

im
where Szmpq = cos [(2-2p)ut(2-2p+q)Mim(R-8)]
«-S
Iml, o odd
L-m even
szm :
+ sin [(2-2p)wt+(2-2p+q)Mim(Q-6)]
C
Im L-m odd

a, is semi-major axis of the Earth,
8 is Greenwich sidereal angle
C,p a0d Syq 37C the standard cosinusoidal and sinusoidal coeffi-

" cients when the potential is expressed in terms of spherical

coordinates (latitude and longitude).

From (2.3) it is seen that summations over four subscripts must be
performed to evaluate the total potential. It is for this reason that
the potential function expressed as in (2.3) is not normally used when
operationally integrating satellite ephemerides. For example, modeling
to. first order a typical geodetic satéllite ephemeris to the sub-meter
level could require more than 500 fmpq sets.

The inclination functions Fzmp

are polynomials. The inclination polynomials are of finite degree, but

(1) and eccentricity functions Gzpq(e)

the eccentricity polynomials are not. However, for small values of e
(less than 0.2) the eccentricity polynomials do converge rapidly. A
useful property to remember is th?t the leading term of Gzpq(e) is pro-
portional to equ where e is eccentricity. Therefore, the summation

over q is usually restricted to only small values of \q\ depending on

10



the precision required.

2.3 Secular, Resonant, m-Daily, and Lohg Period Contributions

Notice the convenience of form (2.3). After substituting (2.3) into

(2.2), it is easy to see how the element perturbations are drivem by a

linear combination of the three fundamental frequencies @, M, %-6. For

example, %% is given by

wat  3F, (1)

dQ
fmpg _ e Lmp ¢
ac  © o+l a1 1pq®) Spmpq @496
c f-m even L-m even
S = m Am .
Lmpq S cos v + c sin vy
Im] 4-m odd In ] 4em odd

vy = (2-2p)w+ (2-2p+q)M + m(Q-6)

If 2-2p = 4-2p+q = m = ), the angular argument is identically zero; and
such Zmpq.combinations would give secular terms (élmpq = const).

If 2-2p+q = 0 and m 750,then the derivative would go through m cycles in
a day. Such an 2mpq combination is called an m-daily term. If 2-2p+q =
m = 0, then both the mean anémaly rate and the rotation rate of the Earth

are not present. - Thus, the only angular element which is present is the

argument of perigee which is very slowly changing. Any term containing
only w is called a long period term. Resonance occurs when the orbital
motion and the rotation of the Earth beat against one another. This

happens when

(2-2p+q) ¥ +(2-2p)& ~ m(8-R) 2-2p+q ¢ O

11



is satisfied. As the equality becomes more exact, the resonance period

can become quite long.

2.4 Analytical Approximations and Mean Keplerian Elements

As will be shown in Chapter 3, perturbations due to certain phenomena,
such as tides, can only be detected when long period effecté are studied.
This is aécomplished by converting from osculating Keplerian elements to |
a set of elements with as many of the short period effects removed as
possible. That is, the history of any osculating element'ai(t) (i=1,2...,6)

can be expressed as the sum of long and short periodic contributions

ai(t) =-.Ei(t) + Aai(t)

-

where ;i(t) i{s the sum of the low frequency, .constant, and secular contri-
butions, Aai(t) represents the high frequency oscillations. The ;; afe
called mean Keplerian elements, The first step in the process of convert-
ing from osculéting to mean variables is to remove all terms that have M

and 8 as angular arguments, which is equivaient to removal of short period

terms.

First-order approximations to the perturbations: are found by assuming

that a,e,i,}"l,uﬁ_,fz are constant. This results in an equation of the form
x(t) = K; sin (ao+&t) + K, cos (ao+ut)

vhere K,, K,, @4y & are constants.

The above can be :Lnt:egx"a:ed to gi;re

x(t) =-K1 cos (ao-i-at) + Kz sin (ao+u.t).

12



When- l-&l is small, as is the case of resomance, then the perturbatioms
can become very large. Excluding this case, substitutions of Vzmpq into
Lagrange planetary equations and integrating as above yields the perturba-

tion equations as given by Kaula (1966):

)
. 21%',““E tpq (2-2ptq) szmpq( )
Aa = pa "
smpq e N.ah.z $
. F G, (l-e ) [(1-e ) (1-2p+q)-(2-2p)1S,  (6)
£ “fmp Apq 9:mP
he = jpa
“~2mpq e N.a"+3 5
o _ ua!' F!.mp ipq [(2~2p)cos 1 - m]Sz 1m(ﬁ)
fmpq e pa**? (1-e );’ sin 1 &
. (armp/ai) G!.pq smpL(c) (2.4)
A mpq = M3e A+ ”
Pq (1-e ) sin 1 §
2 - _ P | =
N _ ua [(1 e )e Fmp(aczp /3e)-cot i(l-e ) oF, lai)Glpql jmpq(é)
Lmpq e Na2'+3et§
' 2 et S 8
. i uaz [-(1-e )e (3G /8e) + 2(2,+1)G1pq] fap lmpq( )
Lmpq e 3,
Na!'+ 4}
2
3ua, Foro Cpog Smpd® (2-2p+a)
- 3 2.
Na“- 62
where N = uy.3 . § = (2-2p+q)M + (2~2p)w + m(9-8),
a
glmpq is the integral of szml;q with respect to its argument.
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Since Cy( is approximately 1000 times greater than any other geopoten-

tial coefficient, the Cyp secular terms very closely resemble the actual

secular rates of the elements Q,w,M

. N C,al .
= cos
Qref 2az(1-ez)z
. W Cag2e. (1.-5 cos?i ) (2.5)
“ref ~ 4az(1-ez)z ' )
. - 3N C,.a2
Moof = N - 20 ¢ (3 cos?i - 1)

ZaZ(1-e2)3'2

These angular rates are used as the reference angular rates in the
denominators of equation (2.4), i.e., it represents deviations about a

secularly precessing Kepler ellipse (a,e,i,ﬁ,é,ﬁ constants).

Recalling that long period perturbations (excluding resonance) due to
the geopotential occur when only w appears in the angular argument,
extremely long periods will occur when w = 0. From the above éref

equation, it is found that w = 0 when

cos i = ¢ % or i = 63.40, 116.6°

This situation is usually referred to as the "critical inclination"

problem.

Polar orbiting satellites (i = 90°) exhibit no node motion due to Cz0-
Satellites wigh inclinations less then 90° have noae regressions (C,¢<0),
while satellites with retrograde orbits (1> 90°) exhibit .progressions of
the node. |

14



Expressions for the first-order perturbations due to third-body attrac-~
tions are given by Kaula (1961) and are similar to (2.4)., Such expres-

sions will be discussed in Chapter 4 when the effects of solid-body tides

are analyzed.

2.5 Previous Numerical Transformation Methods

Transforming from osculating to mean elements or, in other words,
completely éliminating all short period terms could be performed entirely
uéing analytical techniques. However, if a transformation is required
to remove all short-period terms to the centimeter level, one must con-
sider Qecond-and higher-order terms in addition to a vast number of
first-order perturbations.. To eliminate the complexity and large amounts
of computer time required to perform such transformations, R. R. Newton
(1965) fitted a secularly precessing Kepler ellipse to a closely-spaced
ephemeris of Cartesian elements. He obtained a precision of 0.5 to 1.0
arc second in the mean inclination of U. S. Navy navigation satellites.
He then used these "mean" Keplerian elements to recover lumped values of
- the solid Earth tidal Love nugbers and phases. There were large varia-
tions in his results which Lambeck et al. (1974) properly explained as

the neglect of the influence of ocean tides.

Douglas et al. ‘1972) modified this procedure by removing large first-
order perturbations from a sequence of closely-spaced osculafing
Keplerian elements prior to the least squares fit to'a secularly pre-
cessing ellipsg. They obtained a fit of 0.1 arc second in the mean
inclinationsand 10 cm in the mean semi-major axes of the GE0OS-1 and

GEOS-2 satellites.
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Also unaware of the systematic effects of ocean tides on orbits of near-
Earth sate;lites, Douglas et al. (1972) using this improved method of
obtaining mean elements obtained very precise and differing values of the
solid tide Love number kj from.the two satellites, which implied a

latitﬁde dependence on the particular orbit being anaiyzed.

It was the ;esults of Douglas et al. (1972) that led to_the presént
effort to try to produce mean Keplerian elements having a precision Bf
0.01 éré second in mean inclination and 1 cm in the mean semi-majo; axis
(1 cm change in the mean semi-major axis would cause the position in the
direction of the velocity vector to change by only 1 m in a day). To
obtain their results, Douglas et al. corrected the osculating .elements
for geopotential terms through degree and order (4,4) before averaging

over a one-or two-day sequence to extract the single set of mean elements.

2.6 Application of Low-Pass Filtering

It was felt that the use of Kaula's harmonic approach should be
extended to include all significant perturbations due to the geopotential
through degree and order (30,30). Table 1 gives a few selected effects
on the semi-major axis and inclination of GEOS-2. It is easily seen
that even for this small collection of frequencies, one time span over
which all listed terms have an integer number of periods would be extremely
léng. The cost of integrating such a lengthy trajectory would be prohibi-
tive. One solution to this problem is the use of a low-pass filter to
numerically remove high-frequency effects. This is a natural extension of

the éveraging process used by Newton and Douglas et al.

16



Table 1l.-—Selected geopotential perturbations on
GEOS~2, GEM 6 gravity model

Degree Order Frequency Aa AL
(Cycles/Day) (m) (sec)
2 0 25.6 8000. 15.
12.8 130. 0.5
76.9 0.3 .0002
2 2 23.6 8. 14
1.998 0 4.7
27.6 _ 21. .2
3 1 1.003 0. .05
37.4 12. .1
11.8 8. .1
13 13 0.18 2.6 .S
14 13 .17 .2 .04
.16 4 .07
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First, the number of impq sets required to achieye centimeter precision
would be diminished. That is, only pérturbations with amplitudes larger
than 1 m, with periods shorter than the chosen cutoff frequency, must be .
removed since the filter_will "catch" or effectively throw out all pertur-
bations with frequencies greater than the cutoff fr;aquency. However, all
significant variations with periods greater than the cutoff period must
still be modeled. Thus, the filter would tend to keep down the number of
fmpq sets and at the same time eliminate all high frequency effects of
all orders. The reference to higher-order effects is analogous to higher-
order terms in a Taylor series expansion. To evaluate the first-order
approximations, a,e,i,é,a,ﬁ were assumed to be constant when, in fact,
they were not. For examéle, the predicted variation in the semi-major
axis, due to the twice per revolution effect of Cp, is in the neighborhood
of 8 km. This approx_imation is good to about 20 m which can be accounted

for if higher-order terms are considered.

Low-pass filtering can be described simply as multiplying any signal in
frequency space by a unit step function which is equal to zero above any

chosen cutoff frequency. This is expressed mathematically by

A (w) =A (W) ° H (w)

where A (w) is Fourier transform of filtered signal

A (w) is Fourier transform of input signal (2.6)
1 jol< w
H = c
(w) 0 lul2 ol
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Since multiplication in frequency space can be expressed as a convolution

in the time domain, equation (2.6) can be written equivalently as

a (t) =[ a(t) h(t-t) d 7

where';(t) is filtered signal (2.7) -

a(t) is input signal

sin (wct)
ht) = —m———rowo

Tt
A computer implementation of equation (2.7) has been programmed using
. the well known Simpson-rule algorithm. Two shﬁrtcomings of the above
procedure must be pointed out. First, the limits of in;egration (==, =)
must be replaced with realistic finite limits (0, T). For all results
quoted here, a value of T equal to two days was used. To avoid transient
effects near the endpoints caused by the integration over a finite
interval, only fiitered values during.tﬁe middle day were actually used
in the averaging process. Second, even though an extremely small cutoff
ffequenqy is preferred, one is limited by the duration of the finite span
of data to be filtered. Eight-cycles per day was chosen for the results

here.

The advantage of the filter can be easily seen by comparing figures 1 '
and 2. Figure 1 contains the semi-major axis of GE0S-2, after first—order
corrections, using only the GEM-6 geopoﬂential model (Lerch et al. 1974)
in the satellite equations of motion., Notice the scalg required to dis-
play these elements is at the 20 m level, the expected second~order effect

o

due to J,. The high frequency of the residual effects is also pronounced.
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Figure 2 shows the same GEOS-2 elements used in figure 1 after passing
them-through the low-pass filter described above. The scatter about the
average value is reduced to an rms of 3 cm, and the high frequency
signature has been eliminated.

"Figure 3 contains thé unfiltered and filtered values of the inclina-
tions less first—-order corrections. The dominant slope is due to long-
period variations which should be présent in all terms except the semi~
major axis. The scatter in the filtered inclinations is less than 0.02
arc second, which is less than the level expected of such phenomenon as
the M2 tidal effect, while the scatter of the unfiltered points is about

0.1 arc second.

Figure 4 gives a seven-day history at daily intervals of the filtergd '
and unfiltered gsemi-major axes after averaging over a day. The scatter
of the unfiltered mean elements is of the order 5 cm, while the filtered
points are smooth to the precision of thé graph and have a definite
frequency content equal to the beat period of the 13th order resonances.
This effect is believed to be a second-order interaction of J; with the
resonant terms. The comparison leads one to believe that at least 5 cm
of the 10-cm scatter experienced by Douglas et al. (1972) could have

been due to inaccuracies in the transformations.

Figure 5 shows the history in the filtered mean semi-major axis of
GE0S-2 during two weeks in June 1968. The elements were obtained from
two-day arcs of optical flash data. The apparent sinusoidal variation
with a period of approximately six days is due to unaccounted-for
resonant effects, and the secular decay is due to the combination of
drag and solar radiation preésure effects. Note that the random compo-

nent of the signal shown in figure 5 is at the centimeter level. Numerous
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applications of this technique exist not only to determine geodetic and
geodynamic parameters, but also to evaluate the most subtle radiation and

atmospheric effects.

2.7 Damping Effect of Averaging

Equally important in the conversion from osculating to mean elements is
the ranov#l of the direct lunar perturbations prior to averaging. The
direct lunar perturbation corresponding to the semidiurnal-Mz frequency
on the mean inclination has an amplitude 50 times greater than the ocean
tide effect, so that any damping of the direct effect due to averaging
will cause large errors in the ocean tide parameter determination. It
is easy to show that a sinusoidal variation of frequency w averaged over
an interval 2A has its phase unchanged and its amplitude damped by a
factor sin (wA)/wA. As will be shown in Chapter 3, the dominant effect
of the semi-diurnal Mé tide is a semi-monthly orbit perturbation. With
a one day average this damping amounts to about 1% and thus would produee

an error of 50%Z in the ocean tide signal if allowed to occur.

2.8 Tidal Perturbations from a Sequence of Mean Elements

To isolate those perturbations due to tides and other geophysical para-
meters of interest, one must first pass the sequence of mean elements
through an orbit determination program which properly models as many of
the terms of the differential eqﬁation that are not to be estimated or
improved. Fortunately, such a program was available from NASA Goddard
Space Flight Center, Greembelt, Maryland, This computer program, implemented

by Williamson and Mullins (1973), is called ROAD (Rapid Orbit Amalysis
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and Determination). The force model wsed in ROAD is based on Kaula's
work. Only long period, secular, and resonant terms are used which allows
the numerical integrator to use stepéizes of a revolution or longer, as
compared to conventional orbital integrators which normally use 1/75 to
1/100 revolution stepsizes. Such a program is very useful when analyzing
long séquences of mean elements and predicting satellite life times
(Wagner and Douglas, 1976). The possible force model parameters available

to the ROAD user are the following:

. .up to 200 fmpq sets - any degree and order term can be
used.to.(40,40) |

. solar and lunar third-body attractions.

. solar radiation pfessure

. atmospheric drag

. solid tides

. dynamic effect of precession and nutation

. second order J; secular effects

All the above options were exercised when analyzing the data for this
study. The application of the third-body effects of the Moon and Sun was
especially useful. As will be shown in Chapter 3 and Chapter 4, the solid
and ocean tides have the-samé frequency spectrum as do the direct effects
of the disturbing bodies. Thus, ROAD was used quite effectively to
eliminate or fiiter out the direct effects of the Sun and Moon so that
oﬁly perturbations due to solid and ocean tides would remain when the
ROAD theoretical orbit was subtracted from the actual satellite mean

element ephemeris.
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2.9 Aliasing

One might think that fitting an orbit to the:méan element data could
cause the fitted orbit to adjust to aiias the parameters sought, e.g.,
as the ocean tides. Such aliasing should not happen in this case, however.
The orbit is predominately go§erned by the centrai body and J; attractionms.
Thus, the orbit determination must first satisfy these dynamical con-
straints before any other much smaller terms in the potential function
can be considered. Tl:lat is, effects such as zonal and tesseral harmonics
and solid and ocean tides are driveﬁ by the massive effects of central
body and oblateness effects. This will be made even more evident when

analytical approximations to tidal perturbations are obtained.
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3. OCEAN TIDES

3.1 Background
The ebb and flow of the ocean ti@es on the shore have always fascinated
and stimulated mankind. As pointed out by E. P, Clancy (1968), an
ancient Roman author, Pliny, was aware of the dependence of tides on the

motions of heavenly bodies as early as the first century A.D. From

Pliny's Historia Naturalis we find the following: "Mpch has been said
about the nature of waters; but the most wonderful circumstance is the
alternate flowing and ebbing of the tides, which exist, indeed, under
various forms, but is caused.by the Sun and the Moon. The tide flows
and ebbs twice between each two risings of the Moon, always in the space
of twenty~four hours. First, the Moon rising with the stars swells out
the tide, and after some time, having gained the summit of the heavens,
she declines from the meridian and sets, and the tide subsides. Again,
after she haé set, and moves the heavens under the Earth, as she approaches
the meridian on ﬁhe opposite side, the tide flows in; after which it
recedes until she again rises to us. But the tide the next day is never

at the same time with that of the preceding.”

Of course Pliny was referring to the principal lunar semi~diurnal
frequency which Darwin (1898) gave the name M, (M for Moon, 2 for twice

per day) and which has a period of 12.42 hours.

Even though the correlation of tides to the motipn of the Sun and Moon
were known to ancient observers, it was not until 1687 that Sir Isaac
Newton in his Principia was able to construct a simple mathematical model
for tidal phenomena. Based on his law of gravitation; Newton predicted

the occurrence of spring and neap tides, diurnal and elliptic inequalities.
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Laplace in 1773 was the first to formulate the differential equatioms
of motion. (which now are usually referred to as Laplace tidal equatioms).

In his Mécanique céleste, Laplace solved the idealized case of a fluid

covering the entire Earth under the influence of forced oscillatioms.

Tﬁe obvious rise and fall of tides caused man to leave records of fhe
ebb and flqw as well as tidal crests along coasts and estuaries. 1In
1866 Lord Kelvin made the first harmonic analysis of such tidal observa=-
tions. This'procedure was quickly adopted. In 1898 éeorge Darwin, in
his book The Tides, provided a detailed description of the tide generating
potential and associated frequencies. This work was the authoritative

reference for approximately 25 years.

In 1921 A. T. Doodson, recognizing the fact that Darwin's work was
based on variations in equatorial angular arguments of the Sun and Moon,
revised Darwin's theory to represent the tide raising potential in terms

of the ecliptical rather than equatorial variables.

The angular arguments of Doodson's trigometric .series and their periods
are given in table 2. The lunar mean longitude is the sum of the lunaf
node, mean anomaly, and perigee angles. The node is referred to the
ecliptic. The mean longitude of the lunar perigee is the sum of the
node and perigee angles which are again measured in the ecliptic. Like-
wise, the solar mean longitude is the sum of the perigee and mean anomaly
angles. Thus, each of the fundamental angular quantities of both the
Sun and Moon can be broken down into ;inear combinations of their mean
Keplerian angular values. In addition, evaluat;bﬁ of local mean lunar

time will require information about the Earth's rotation.
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Tabhle 2,—Six fundamental angular arguments of

the Earth-Moon-Sun system

Representation

This :
study Doodson Description Period
B1 T mean lunar time reduyced to an
angle T = 8, - s 12.42 hr
where 8g is the longitude of Greemwich
B2 s Moon's mean longitude 27.3215 d
B3 h Sun's mean longitude 365.2422 d
By P longitude of Moon's perigee 8.847 yr
Bs N' = =N N is the longitude of the Moon's ascend-
ing node : 18.613 yr
Bg P1 longitude of thé Sun's perigee 20,940 yr

As was indicated when_comparing Doodson's and Darwin's work, a very
important point is that these angular variables are referred to the piane
of the ecliptic--the plane creatgd by the orbital motion of the Earth
about the Sun. This should be remembered as it will be referred to again

when discussing the solid-tide contribution.

3.2 Doodson's Harmonic Representation of Tide Height

Traditionally, as defined by Doodson, the variation in height at tide
gages has been represented by an amplitude and associated phase for each
argument number. The argument number is a shorthand notation for repre-

senting the integral coefficients of the six fundamental figures used to
29



evaluate the angular argument;

The argument number is obtained by tak;ng the last five 1ntegr§1
coefficients and adding the integer 5 to egch to create a set of positive
integers. This new set of six positive digits then constitutes the argu—
ment number. For example, if the angle

2t - 3s + Ah + p - 2N' + 2p;
is being considered, the argument number ;hat represents this frequency
is 229,637. The first three numbers are called the constituent number
(229). The first two are called the group number (22), and first number
is called the species number (2). Doodson's constituent number and
the Darwinian symbols can usually be used to represent the same collection

of major frequencies (periods of ome year or less).

A breakdown of some of the Darwinian symbols and associated Doodson

argument numbers are given in table 3.

Thus, at any tide gage the tide height can be represented.by

R(T) = T § cos(a-B-v_) , (3.1)
n n n
where ;:E =z niBi. n is a vector of the six integers representing
i=1 .
all possible combinations of Bi’ or what Doodson called the argument
number. n; is always restricted to positive integers while n, - ng can

take on any pdsitivg or negative integer value. Gn and wn are the associ-

ated amplitudes and phases at the gage.

This same procedure can be extended to represent amplitude and phase

over the entire Earth surface (Hendershott and Munk, 1970)

h(¢,2,T) = L & (4,1) cos [n"B-y_(8,))] (3.2)
. .
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Table 3.--Selected Darwinian symbol and Doodson
argument numbers

Doodson
Darviunian Argument Period

Symbol Number (hx) Description
M, 255,555 12.42 Principal lunar semi-diurnal
3 273.555 12.00 Principal solar semi-diurnal
Né 245,655 12.66 ~ Larger lunar elliptic semi-diurmnal
.0} 275.555 - 11.97 Luni-solar semi-diurnal
L, 264.455 12.19  Smaller lunar elliptic
K 165.555 23.93 Luni-solar diurnal
0, 145.555 25.82 Principal lunar diurnal
P 163.555 24.07 Principal solar diurmal
Q1 135.655 26.87 Larger lunar elliptic
ME 075.555 13.66 d Lunar fortnightly
Mm 065.455 27.55 d Lunar monthly
Ssa 057.555 188.62 d Solar semi-annual

This is accomplished by expressing (3.2) in terms of

Gn(¢.>\)cos v,(¢,1) and Gn(¢,k)sin wn(¢,7\)

which are then expressed in series of surface spherical harmonics (Lambeck .
et al. 1974). Of course, on the continents the Gn(¢,A) must vanish. That
is, the height for any fféquency component n = (ny,n3,...,0g) at any point

(6,A), at time T, will be given as

o A . +
h (6,A,7) =2 I P, (sin ¢) [C:.Q.m sin(nBtalte, )
=0 mn=0
* g in (A-B - mite) )] (3.3)
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The % = 0, 1 components of (3.3) are discussed by Hendershott (1972).

3.3 Cotidal Charts

Although the global tide solution is expressed by a set of coefficients

C+ and C;zm’ scanning this list of coefficients is unacceptable when

nim

trying to visualize the physical processes. The traditional method of
presenting any ocean tide model is with a cotidal chart. A typical
cotidal chart is given in figure 6. The physical features of the global
fide are readily available. For example, there are places where no tidal
oscillations exist. These éoints are called amphidromes. The tidal
crest will circulate about these amphidromic points with the period of .-
the particular tidal cdmponent being investigated. On the cotidal chart
the amphidromes can be found where the constant phase lines or cotidal

lines emanate. Those lines not originating at the amphidromes are the

lines of constant amplitude or corange lines.

3.4 Numerical Solutions of Laplace Tide Equations

It has been tried several times to integrate numerically the Laplace
tidal equations using modern computer methods (Hendershott, 1972; Bogdanov
and Mﬁgarik, 1967; Pekeris and Accad, 1969). To date, no two solutions
exhibit clése agreement. Large variations in location of amphidromes
exist and phase differences of hours.are common. Table 4 giveé the
principal terms in the spherical harmonic representation of three models
for the M, component as given by Lambeck et al. (1974). Notice that the
amplitudes differ by approximately 257. Disagreement in the phases is
also quickly oBservgd. This is not unexpected, however. It was necessary

for each investigator to model such3§haracteristics as ocean bottom
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topography, coastal boundaries, internal friction due to the viscosity of'

water, ocean loading and friction in the shallow seas.

3.5 Other Methods for Resolution of Tidal Parameters

One could also suggest that the solution for the phdses and amplitudes
be obtained from least-squares fits of the spherical harmonic representa-
tions to tide gage data. This would be the most obvious method if
sufficient data were available from the open areas of the oceans. To
date, mostly coastal tide gage data are available, and the dynamics of

the tides in these areas ig controlled by the coastal boundaries and the

continental shelf. A few deep sea instrumental results are indeed avail-
able, but not nearly enough to be used to obtain any representation of
the global tide. Their use has been restricted to a realistic comparison

of solutions of the Laplace tidal equationms.

Satellite perturbations, on the other hand, do reveal the effect of
global solid and ocean tides. This phenomenon affords us the opportunity
- to solve for a limited set of spherical harﬁonic coefficients without
having to construct the complicated dynamics required by oceanographers

when trying numerically to solve the tidal differential equatioms.

Table 4.--Principal coefficients from various

ocean tide models

+ + + -+
: Ca22 €22 Ca} €u42

Investigator (cm) (degree) (cm (degree)
Pekeris and Accad 4.4 340 1.4 170
Hendershott 5.1 316 - 1.2 115
Bogdanov and Magarik 4.3 325 1.7 116
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3.6 Ocean Tide Potential

Once the tide height is knoﬁh, then the potential due to this mass of
water can be obtained. This is accomplished by realizing that the tidal
layer constitutes a very thin film with constant density and varying height
covering a nearly spherical body. The mass of a small element located at

latitude ¢ and longitude A on the surface is given by

dm(.)) = §h (4,0 o, a2 cosgdp & (3.4)

where the summation is computed over all possible tidal frequencies n.
Integrating the differential extermal potential due to each differential
mass at (¢,1) over the entire sphere yields a modified or time varying

- potential due to this tidal layer on any mass at point (r',¢',1")

(¢ A)p a cos ¢ do dA
au(r ', ',A",T) = f
- - 2a r'cos y''+ a 2)‘15 (3.5)

"/2 e . e

The denominator in (3.5) is just the distance from any point (r',¢',A'")

' is the angle from

to the.differential mass on the surface at (¢,A). ¥
(ae,¢ ,A-) to the center of the Earth to the point (r’',¢',A'). Noting that
(;'Z-Zaer'cos y' +a§)_% is the generating function for Legendre polynomials
and using the orthogonality relation between Legendre polynomials and
associated Legendre functions (which occurs when the tide height representa-

tion is multiplied by the Legendre polynomials generated by the expansion

of the denominator), equation (3.5) can now be written (MacRobert 1967;

Menzel 1961)

2+1
a \J
X
AU(I',¢',A',T) = 41rGae 2 EEI;T (r—?) hnlm(¢’ ')Dw
nlm
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or
i+l

' ' ' ' = _1_(2) .
au'(z',9',A',T) lnrcaepw n:m 2341 \5 sz(sin 6") (3.6)

[c+

nim ) +¢C

nim

—.— y + — — ? -
sin(n B+mA+en2m sin(n B-mA+en£m]

The center of mass attraction of the Earth causes the ocean floor to
depress. There is also another deformation due to the attraction on the
ocean floor upward toward the tidal layer. The combination of these two
deformation results in yet another change to the potential. This further
change due to deformation is defined by the load deformation coefficients
h; and k; (Munk and MacDonald 1960). h; is used to Aefine the geometric
height change as h; AU . As pointed out by Munk and MacDonald, the
depression is greater than the uplift, so h& and kﬁ are negative as Qighc
be expected. Thus, the total potential outside the Earth's surface can

now be written

BU'(r,0,0) = I (G AU (5,0,0) | (3.7)

where AU(r,¢,)A)isgiven in (3.6). The time variable T has been suppressed.

Numerical values of k; used in this study are taken from Farrell (1972).

k, = -0,308

ky = -0.132

Lambeck et al. (1974), following the same procedure as Kaula (1969), have
expressed equation (3.7) in terms of the Keplerian (equatorial) elements

pf a satellite
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2o - (1+k}) (aei' -
iR e DI M Tl vy A 3-5)
n tmpgq+t ;

4-m even
+sin
* 1) 6, (e) Y
CnﬁmFZmp( 2pq } nimpq
#COS Joem odd

whére yimp; (2-2p)w +(R=2p+q)M + m(R-8) + n-B + €

The inclination functions Fzmp(i) and eccentricity functions G (e) are

Lpq
the same polynomials discussed in Chapter 2.

3.7 Analytic Approximations of Ocean Tide Perturbations

As with-estimating perturbations due to the geopotential, the potential
AU' must be substituted into the Lagrangian blanetary equations to obtain
the six first—-order differentiél equations of the motion. Again, noting
that a,e,i remain nearly constant, the integration of these equations can
be approximatéd by assuming the angular variables Q,m,M,Bi to change lin-
early in time (i.e., secular rates due to Cy; are used for Q,w,M). Now
the differential equations are easily integrated. For example, the incli-

nation perturbations are given by

- 441

. 4n(l+k£) (ae) P .
pmi s — 2 g (2 cc, F, (1) G, (e)
nimpq 2241 e\a Naz(l-ez)&sin i nim ~ imp 2pq (3.9)
. ad £-m even
t+ sin .
(2-2p) cos 1 - m Y
T nimpq
Y +cos fL-m odd
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« *
Notice the presence of the y ~ in the denominator of (3.9). Since the
perturbatiéns due to ocean tides are small, smalllvalues of % * will be
required to amplify the perturbations to a detectable level. It is for

this reason that mean elements (slowly varying) rather than osculating

elements are analyzed.

Integration of the node is slightly more complicated. There is the
expected 'direct' effect and an indirect effect through the C;o secular
rate assumption. First, the direct effect is found by integration of
the Q equation, as was doge for di/dt. This indirect effect is obtained

by realizing that the assumed secular rate due to Cyq

- 2
. 3 \/J;: C20 3,
= a

secular 2(1-e2)2 az

cos i

will experience small changes due to the low frequency variation in the

inclination obtained in equation (3.9). Thus, the indirect effect is

N
secular
82 () 3p41rect = f—r Ai(t) dt.

Combining these two effects gives

2+l
NE b (1+k ) . (ae) e, e L {3F2mn(i)
= T2+1 CZe\s ' ) ai -
nimpq 2241 e\a Naz(l-ez)%sin g mim otea g
(3.10)
T cos L-m even
\ 2 Cop sin 1 ' * *
20 Sin - -
398 22 " () {(2-2p) cos i - ml Ynimpq
2" \a 1-e2)2  HoP oyt T sin
(1-e Y * S Jo-m odd
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3.8 Long Period Ocean Tide Perturbations

For a given”véctor'of'coefficients';, only certain values of impq are.
admissible to achieve low frequency perturbations (periods longer than one
day). 2-2p+q must equal zero to eliminate the mean anomaly. Since él =
8 - ;. where 8 is the sideréal rotation, 1 must equal n; to cancel out all
daily variations. m éannot take on negative values so only angular varia-
bles Y+ yield long period terms. Since perturbations are proportional to
elql, q must equal zero to rule out negligible terms. With ¢ set equal to
zero, the £ - 2p + q coefficient now reduces to 2 - 2p. Thus £ must now
be even. For semidiurnal terms (n;=2), values of 2 and m to be considered
are (2,2),!(4,2), (6,2).... For the diurnal tides (n;=1), % and m can take

on the values 2,1), (4,1), (6,1).... Omly 2 = 2,4 need be considered.

To sense the magnitude of these ocean tidg perturbations, table 5 gives
amplitude. estimates on the inclination and node elements for several satel-
lites. One notices at once the large perturbations due to solar tides.

As was pointed oﬁt previously, this effect is due to the small values of

vy which appear in the denominatbr of the perturbation equations. It is also
obvious that the perturbation due to the tidal component, which is the most
desirable to observe, makes the principal lunar semidiurnal or M,, in fact,
one of the most difficult to resolve. From table 5 it is seen that resolu-
tion of the M; oéean tide requires an accuracy of 2/100 arc second in the
node and inclination data. The data of Douglas et al. (1972) were accurate
to the 1/10 arc second level which enables them to resolve the much larger

solid-tide perturbations.
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Table 5.-~Predicted perturbations on several satellites

Tide

My 0, S2 ' Py

Satellice — —_ o —_
Al AQ Period At AQ Period AL AQ  Period Al AQ Period
(arc sec)(arc sec)(days) (arc sec)(arc sec)(days) (arc sec)(arc sec)(days) (arc sec)(arc sec)(days)
GE0S-1 (1=59.4°) 0.03 0.01 11.7 0.00 . 0,00 12.6 0.04 0.05 55.7 0.06 0.01 85.4
GE0S-2 (1=105.8°) .04 .02 15.3 .00 - .01 14.4 43 2.70 432.3 .28 3.33  632.4
GEOS-3 (1=115.0°) .06 .03 17.2 .00 .01 15.2 .12 .26 103.9 .41 2.52 482.1
NAVSAT.(1=89.25°) .04 .01  13.6 .00 .01 13.6 .20 .54 169.6 .00 .31 175.9
BE-C (1=41.2°) .04 .03 10.3 .01 .01 11.8 .03 .04 34,4 .07 .07 57.9
STARLETTE (i=4'9.8°) .04 .04 10.5 .01 .01 11.9 .03 .05 36.5 .08 .03 60.8

SEASAT (1=108.0°) .07 .03 16.2 .00 .01 14.8 .21 .68 163.4 2. 108. 3120,

LAGEOS (1=110.0%) .01 .00 14.0 .00 .00 13.8 .05 .02 280.7 02 .07 221.3




4. SOLID TIDE

4,1 Tide Raising Potential

Bagsed on Newton's inverse square theory of gravitation, the attraction
of the Sun on the Earth is approximately 178 times the attraction of the
Mbon on the Earth. However, the origin of the tidal forces is due to the
difference of attractions of the body at any point on the surface with
the same attraction at the center of mass. On figure 7, the gravitational
forces (Newtonian attraction) ﬁre represented by the solid lines. Differ-
encing the force on the center of mass with the other two forces at the
surface (solid lines) yields the origins of the body and ocean tides (in
éonjunction with the Earth's rotation) represented by the dotted lines.
Thus, the tidal forces are proportional to the inverse cube of the
distance to the disturbing body. It then follows that the lumar tidal

force is actually about twice the solar tidal force due to the proximity

of the Moon to the Earth.

A deformation is created by this attraction which looks like an ellip-
soid with the major axis pointing toward the Moon.

‘The gravitational acceleration of a mass m* at a point T* on mass at
point T relative to the center of the Earth can be calculated from its

corresponding potential

U = Gm* ZZ :n-i-l P, (cos s) (4.1
n=2 r
T.t*

, the cosine of the angle from the mass point to

where cos s = —— —
x| =7

the disturbing body from the center of the Earth.
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Figure 7.--Tide Raising Forces Due to the Moon

As with the loading due to the ocean tides discussed in th_e previous
chapter, proportionality constants (called Love numbers) are used to
represent the height change.and associated nonstationary character of.
the potential due to this attraction. The deformation in hei.ght for the
degree n at the surface is defined by ‘nn Un(ae) /g. The modification to
the potential at the surface is defined by the potential Love numbers, kn,

as

a n

Gm* <
AU(a-e) = r% §=2 kn(r_i) Pn(cos s) (4.2)

Since the moon is at approximately 60 Earth radii from the Earth, increas-

ing the degree of n results in a damping effect of 1/60.
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Applying Dirichlet's thcorem allows one to calculate the additional potential

outside the Earth due to this deformation as

. o a, n a, o+l
ko) '_S% 22 ko 'ﬁ'\) T. Pp (cos s). (4.3)
. N

4.2 Solid Tide Potential as a Function of Satellite Keplerian Elements

Kaula (1969) has reformulated the above in terms of the Keplerian ele-

ments of both the disturbing body and the mass as

n+l

weamE T Y T > kn(% . (oem)! 2

n=2 m=0 p=0 q=-® h=0 j=-o m (n+m)! g* o+l

Fomp D) F oo (1) Gopq @ Gnhj(e*) cos [ (n-2p) wt(n-2p+q)M (4.4)

-(n-2h) w*~(n-2h+j ) M*+m(Q-0%)]

_ )1 m=0

a ~ )2 m#0

where F(i) and G(e) are the familiar inclination and eccentricity polyno-
mials.

Normally the coordinate system iﬁ which the above Kepler elements are
referenced is an Earth équato:ial system. However, as previously discussed,
the historical representation of the ocean tides has been in terms.of the
ecliptic variables of the disturbing body (Mbon.or Sun). This is only
natural since the mean angular rates of the Moon or Sun are rather constant
and also well known in the ecliptic system.' On the other hand, the system

in which satellite mean element rates are fairly constant is the Earth
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equatprialsystqn; This too is only natural since the major perturbing
effect oﬁ near Earth satellités is due to the Earth's oblateness. Thus,
in order to compare in detail the effectsof both solid and fluid tiée
perturbations, it is necessary.;o express the disturbing poteﬁtial in

terms of the satellite equatorial elements and the body's ecliptic ele~

ments.

The mechanics of this transofrmation can be found in appendix I. The
resultant form of the potential in terms of the equatorial elements of

the satellite and ecliptic elements of the disturbing body is given bw

FErEEE .
AU = Gm X k U] X
=2 m=0 p=0 gA-® k==n h=0 ja== ‘2 nmk kot m (4.5)
(aem)? cos m-k even
Tﬁ:ﬁ?f anp(i) Fnlklh(i*) anq(e) Gnhj(e*) Kk P
! n-k .
(1) SIUp—k odd

p = (n-Zp)w+(n-2p+q)M+mQ-(n-2h+j)M*—(n—Zh)w*-IklQ*+sgn(k)(k-m)v/Z .

It is seen that equation (4.5) is very similar to equation (4.4), as
would be ex?ected. The extra subscript k simply reflects the fact that
the.equatorial rates of the disturbing body do vary depending on the
aligmment in ecliptic space. For example, the equatorial value of the
lunaé inclination will vary between 18° and_28° deéending on the location
of the ecliptic value of the node. The ecliptic inclination of approxi-
mately 5° will sinusoidally vary about the obliquity of.the ecliptic (23°).

Likewise, the equatorial node and perigee rates of the disturbing body
scale the individual frequency terms. It is
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also a convenient procedure to equ#te coﬁmon frequency components of the
solid Earth and ocean tide potentials. Notice also the presence of
multiple solid Earth tide terms for a given ocean tide component. For
example, the conditinn'for'an M, term is‘that the angle 2(0~Q%*)-2Mk-2,%

be present. This can happen for two sets of coefficients

k=m=2

k=-m= -2

However, as is pointed out in appendix I, the scale coefficient for k = -n

is negligible while for k = m the coefficient is close to unity.

Thus, for each solid tidal component of the potential there is a corres-

ponding ocean tide potential contribution with the same angular argument
and vice versa. Another important case is when the degree and order
subscripts of the ocean tide terms are equai (2 = m). In this situation
the corresponding solid tide component of same frequency will have
identical dependence Qn the satellite orbit. That is, the ratio of the
coefficients of the trigonometic functions of the solid and ocean tide
terms will be constant no matter what values of a,e,i are used. Thﬁs,
the solid and.ocean tide péramecers cannot be separated from analysis of

long period perturbation of orbiﬁal elements alone.

4,3 Solid Tide Lag

Since the longest period of free oscillation (Jefferies 1970) of the
Earth is slightly less than one hour, we have been able to treat the
Earth's response to the deforming attraction as a static respomnse. Because

of the anelasticity of the Earth, the actual deformation or rise and fall
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in the sutface.occurs slightly after the point on the surface passes under
the disturbing body, Thus, the potential must be modified slightly to
account for this phenomenon. Following Kozai (1965), let us assume a
modified or fictitigus position for the disturbing body under which the
maximum bulge occurs. Figure 8 shows that one must move from point A to
poinﬁ B. First, any lag in the Earth;s response will occur in the direc-
tion of the Ea?th's rotation. Let At be the lag in time (a positive
number). This fictitious position can be represented by a rotation of
the body's orbital plane about the Earth's rotational axis, an amount
8at, and then backing up the satellite in time, an amount At. This pro-
cedure is accomplished by increasing the nodal crossing, an amount 8At,
and then decreasing the mean anomaly by'ﬁAt or

. ok
af = o+ b4t }f; = M- MAt

Then a more realistic expression for the disturbing potential can be given

by substituting the above into equation (4.4)

2+1 al
(n-m)! .
AUompqns = ( ) *n+1 “m (oFm) ! Fomp () F_ (1% Crpq (@ Canj (e*)
(4.6)

cos[(n-2p)m+(n-2P+Q)M-kn-2h)m*-(n-2h+j)M*+m(Q-Q*)+€zmhj]

where Smh = =(n=-2h+j)M* At + méAT

= méAt

At 82 fag
= ?; = Earth's rotation
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This approach agrees. with Newton (1968) and Kaula (1969) in that the lag

angle is proportional to frequency (Darwinian assumption).

P

X

Figure 8.--Fictitious Lunar Orbit Compensation for Solid Earth Phase Lag
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5. ESTIMATION OF M, OCEAN TIDE PARAMETERS FROM
SATELLITE ORBIT PERTURBATIONS

5.1 Discussion of Data

Two histories of satellite ephermerides have been obtained for studying
the effects of solid and ocean tides. The first was a set of osculating
elements of a U. S. Navy Navigation satellite 1967-~92A obtained -from
James G. Marsh of the NASA's Geodynamics Branch, Goddard Space Flight
Center, Greembelt, Maryland. ﬁr, Marsh obtained the Doppler data for

this satellite covering a 160-day arc from the U. S. Department of Defense.

The second satellite for which data were made available is the GE0S=3
satellite. GEO0S~3 wasilaunched in early 1975 and was designed specifi-
cally for geodetic iﬂvestigations. It is the first satellite launched
with an operational radar altimeter ( NASA, 1974) to measure directly
the surface of the oceans. To be able to utilize the High quality
altimeter data, the Naval Surface Weapons Center, Dahlgren, Virginia _
tracked GEOS~3 with approximately 40 globally distributed Doppler stations
on a continual basis. Very precise orbits were obtained from this track~
ing campaign. Using the mean element conversion program, which was created
. for this study, tﬁe Defense Mapping Agency Topographic Center, Washingtom,
D. C. converted a 200-day arc of osculating GEOS-3 data for use in this

endeavor.

5,2 Analysis of 1967-92A Satellite

The gravity model used by Marsh when determining the orbits of 1967-92A
from the Doppler data was the GEM-7 model (Wagner et al. 1976). The use

of GEM-7 was an important factor in the success of this work. In order to

48



achieve a precision of 0.0l arc seconds, it was necessary to consider
perturbations due to the entire GEM-7 model (which is complete to 25,25)
and remove about 600 fmpq terms in Kaula's formulation of geopotential

perturbations.

Table 6_gives the expected perturbations on 1967-92A.due to different
tidal components. Of course, the M, tide is the one currently being
sought. Rgmembering that the tidal amplitude is proportional to the
period (inversely proportional to the rate), it is reasonable to expect
the solar tides to be larger in amplitude than the lunar ones. For 1967-
92A the node is rather insensitive to either the (2,2) or the (4,2) tidal

harmonics. It is for this reason that only the inclination of 1967-92A

is studied.

After the 1967-92A mean elements were passed through the ROAD program,
the differences between the theoretical orbit, which ROAD determined from
the data, and actual mean elements were output for further amnalysis.
The inclination differences were then assumed to have the ocean tide
perturbations and solid tide errors remaining, since it was unmodeled in
the ROAD computer runs. Also, other ummodeled or mismodeled effects were
also left behind. Therefore, it was necessary to extract the ocean tide
perturbations.usiné standard least-squares procedures. An amplitude and
phase were fitted to the inclination residuals ét tﬁe M, frequency as
well as other frequencies which appeared, such as resonant, S;, P; fre-
quencies. A slope and an intércept were also included in the solution
set to remove left-over secular and very long period effects, such as
the K; and K; tidal effects. A periodic effect of unknown origin, with a

period equal to approximately 8 days, also had to be included in the
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solution set.

Figure 9 shows a typical portion of the inclination residuals after
removing all perturbations includiﬁg solid tide effects with k; = 0.30
and § = 0° except for the solved-fof amplitude and phase at the My fre-
quency. Not the M; tide is clearly discernible. The rms fit to the data

was 0.03 arc seconds. The solution for amplitude and phase at the M,

frequency implies the following observation equation for the M, tide:

" : -2 0,,40
(3.8 £ .60) x 10 © sin {o(t)+3317+10°] =

(5.1)
”" . "
a0 cCy, sin(o(t)+e,, ] + - X0 °C, sin[o(t)+e“2]
where o(t) = 20 - '2M*% =~ 2u* - 20%
Table 6.--Perturbations on the inclination of 1967-92A
satellite due to ocean tides
Period
Component Days Amplitude Source
"
M, 13.6 0.04 Hendershott* (1972)
S, | 169.6 . 0?17 Bogdanov and Magarik¥*
, (1967)
Ko 2383.0 Unknown =~ = = — —==—=-
"
0, 13.6 0.000 Dietrich* (1944)
1]
P 175.9 0.004 Felsentreger et al.
" (1976)
K 4766.0 0.08 Dietrich* (1944)

*Ag feported by Lambeck et al. (1974).
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o(t) is equal to 1 cycle/13.58 days.
Table 7 gives a comparison of this result with amplitude and phase.
predicted from four other numerical M; tide results. The mean elements

used to obtain these results are given in table 8.

The formﬁl variances of these results were obtained by assuming the
variance of the data to be equal.to the mean squared résidual after the
fit (0?03). Because of the uniqueness of the M; frequency (the effect
of the 0y component is negligible on 1967-924), little aliasing from
other.sourqes is likely. Thus, the formal uncertainties obtained are

reasonably reliable.

0f course, other tidal components can also be obtained from these mean

elements, but caution is required because of aliasing effects.

Table 7.-~Amplitude and phase of inclination perturbations
due to the My ocean tide on 1967-92A satellite

Source Amplitude Phase
Observed 0.038 331°
Pekeris and Accad 1 0.031 335°
Hendershott (Model 1) _ 0'..040 322°
Hendershott (Model 2) 0044 280°
Bogdanov and Magarik 0.030 340°

‘5.3 Analysts of GEOS-3 Satellite
" GEOS-3 is an ideal satellite to use for tidal studies. For M; recovery,

the inclination perturbatioﬁ is dominated by the (2,2) harmonic and the
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'I'a‘ble 8. Mean Keplerian Elements (1967-92A)

TINE A E 1 NODE PERIGEE n
(HJD) (RETERS) (DEGREES) - (DEGREES) (DEGREES? (DEGREES)
41821.0 7430987.486 0.005369% 89.24673344 36.97650838 24.76178357 56.39239076
41823.0 7430986.8385 0.0052570 89.24602235 36.82450599 19.52975786 4£9.11872932
41825.0 7430985.847 0.0051408 89.24562807 36.67228158 14.18980869 41.75514648
41827.0 7450985.042 0.0050212 89.24568904 36.52015004 8.73695363 34.50651422
41829.0 7450983.963 0.0048994 89.24612784 36.36823880 3.13397258 27.38920763
41331.0 7450983.128 0.0047762 89.24652640 36.21655193  337.436342894 20.40631731
41833.0 7450982.345 0.004653¢4 89.24631777 36.06488154 351.56661857 13.57846940
41835.0 7430981.341 0.0043324 89.24541367 35.91280483  345.33396366 6.914626227
41837.0 7450981.196 0.0044142 89.24456488 35.76027840  339.32532836 0.42852212
41839.0 7450980.3524 0.0043007 89.26440287 35.60770861  332.93320062 354.12832147
41841.0 7450980.050 0.0041931 89.24476871 35.45545186  326.33789922  348.01209787
61843.0 7450979.297 0.0040933 89.24516443 35.30341585 319.60044007 342.07320769
41845.0 7450978.480 0.0040032 89.26514177 35.15147979  312.635679814  336.33119465
41847.0 7450977.735 0.0039236 89.24463201 34.99932775  305.53045712  330.76854172
41349.0 7450977.051 0.0033567 39.24336303 3434687105  298.24330748  325.36363149
41831.0 7450976.386 0.0038037 89.24320800 34.696416913  290.32288221  320.10417888
413853.0 7450975.4387 0.0037657 89.24295417 34.56133560 283.29377124  314.95041475
41855.0 7430974.787 0.0037438 89.24318343 34.388653446 275.68676036 309.87612131
41857.0 7450973.971 0.0037375 89.24365504 34.23622701 268.03932025 304.84310563
418359.0 7450973.166 0.0037430 89.24385106 34.08397817 260.39851613  299.80410601
41861.0 7450972.361 0.0037749 89.24337556 33.93155827 252.80699106 294.71721456
41863.0 7430971.578 0.0038174 89.24244006 33.77867256  245.30135636  289.54628612
41865.0 7430970.954 0.0038746 89.24183541 33.62545806  237.90443505  284.27045135
1867.0 7450970.132 0.0039454 89.26200596 33.672346568  230.65738926 278.84515349
41869.0 7450969.411 0.0040282 89.24260460 33.310359848  223.58572635 273.24591463
413871.0 7450963.572 0.0041217 39.24295119 33.16712452  216.68990291  267.47095648
41873.0 7450968.091 0.0042241 89.26281676 33.01458716  209.98679512  261.50423650
41875.0 7450967.583 0.0043336 89.24227439 32.36183592 203.46728445  255.33542974
41877.0 7450967.170 0.0044485 89.24166190 32.70878150 197.13450870 249.02163640
41879.0 7430966.550 0.0045670 89.24133077 32.55553882 190.98363954 242.50784111
41881.0 2450965.819 0.0046390 89.24149613 32.402461411 184.99968052 235.82860332
41883.0 74509865.249 0.006311%5 89.242064649 32.24962558  179.17202591  228.99370399
41885.0 74630964.424 0.0049347 89.2426627% 32.09684095  173.49198324 222.01149817
41887.0 7450963.858 0.0030337 89.24283512 31.94433296 167.93572219  214.38606566
412389.0 7450963.158 0.0051745 89.24237623 31.79158588  162.54823510 207.63343500
41391.0 7430962.773 0.0052897 89.26169930 31.63845407 157.2455313¢ 200.27831087
41893.0 7450962.306 0.0054011 39.24162348 31.68512758  152.04475149  192.82332969
41895.0 7450961.562 0.0055069 89.24230245 31.33216065 146.93867214  185.27461460
41397.0 7450960.708 0.0056064 89.24319457 31.17955349  141.92319311  177.63582150
41899.0 7450960.033 0.00356987 89.24362340 31.02721463  136.97397750  169.93118385
41901.0 7450959.544 0.0057345 89.24357442 30.87479097 132.08857717  162.16373393
41903.0 7450959.087 0.0053622 89.24325479 30.72213297  127.26076741  154.34008662
41905.0 7450958.629 0.00393023 89.24300209 30.56929234  122.47738164  146.47337846
41907.0 7450958.140 0.0059909 89.24314149 30.416646811  117.74101522  138.56165929
41909.0 7450957.692 0.0060420 89.24379803 30.26384047 . 113.037355538 130.617713890
41911.0 7450957.475 0.0060841 89.2447177% 30.11199738 1038.36151017 122.64643278
41913.0 7650956.899 0.0061160 89.24543726 9.95952159  103.70221815  114.65821152
41915.0 7450956.498 0.0061378 89.24536579 9.80754180 99.06323876 106.65020716
41917.0 7450956.243 0.0061302 89.24516646 9.65335827 94.43538724 98.63234616
01919.0 7450955, 832 0.006153" 89.24490943 9.502846086 89.8168%561 90.60702596
41921.0 7450955.305 0.0061456 89.24534764 29.35033637 85.19185229 82.58952259
41923.0 7450954.562 0.0061274 89.24639485 9.19835620 80.55373675 74.38556980
61925.0 7450953.966 0.0060997 89.24731839 29.04678026 75.90402237 66.39330899
41927.0 7450953.344 0.0060631 89.24768625 8.39528258 71.23603296 58.61977920
41929.0 7450953.130 0.0060172 89.24738828 28.74368715 66.54387733 350.67157340
41931.0 7450952.489 0.0039618 89.24736511 8.59190841 61.81685696 42.76004739
41933.0 7450951.747 0.0058973 89.24736914 28.44001089 57.04790620 34.89249409
41935.0 7450951, 226 0.0058244 89.24779497 28.28822276 52.23666887 27.06869958
41937.0 7430950 0.0057439 89.24869960 28.13667402 47.379%56612 19.29162646
41939.0 7450949. lbb 0.0056539 89.24965408 27.98336702 42.45836269 11.57880764
41941.0 7450949.187 0.0055607 89.25012688 27.83461826 37.46732785 3.93611291
61943.0 7450948.725 0.0054389 89.24998287 27.68355747 32.39894069  356.37195919
41945.0 7450948.463 0.0053517 89.24957656 27.53223383 27.23161052  343.38366719
41947.0 7450947.396 0.00352397 89.24958327 27.38068702 22.00678264  341.50473828
41949.0 7450947.040 0.00%1239 39.25029316 27.22941743 16.64640304  334.237760%%
41951.0 7450944.009 0.0050052 89.2513038¢4 27.07854991 . 11.16885466 327.08385407
41933.0 7450944.995 0.0048843 89.25196591 26.92794376 5.575478350 320.03677970
41935.0 7450943.965 0.0047630 89.25204665 26.77740905  359.84756374 313.16075720
41957.0 7450943.164 0.0046420 89.231745%6 26.62664355  353.96004343  306.42646739
41959.0 7450942.048 0.0043232 89.25144333 26.47570760 347.90829612 299.83907272
41961.0 7450941.210 0.0044075 89.25143885 26.32466887  341.68758120 293.46313887
41963.0 7450940.483 0.0042962 89.25193779 26.17379285  335.29986968 287.23384531
41965.0 7450939.632 0.0041909 89.25271814 26.0232372%  328.73226428 231.1893660%
41967.0 7450938.726 0.0040934 89.23336943 25.87294330  321.97317678  273.33314474
41969.0 7450937.909 0.0040055 89.25337433 25.72268701  315.03311939  269.66303230
41971.0 7450937.307 0.0039278 89.29279222 25.57210112 307.92420825  264.16173400
41973.0 7450936.499 0.0038622 89.25224479 25.42123337  300.66203899 258.81613764
61975.0 7450935.391 0.0033108 89.232366%6 25.27031933  293.26048094  253.61242273
61977.0 7450936.314 0.0037745 89.25299799 25.11969774  285.74947448  248.51963060
61979.0 7450933.239 0.0037531 89.25361943 26.96940086 278.17114838  243.49314923
41981.0 7450932.335 0.

0037473 89.25376882 26.81922158  270.36502738  238.49982493
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nodeis affected mainly by the (4,2) harmonic. The node and inclination data
were treated in the same manner as 1967-92A. An amplitude and phase at

the M, frequency were obtained for each element history. The resulting

M, observation equatioms for GEQS-3 are

Inclination ;

(3.99 * 0.4)x107% sin [a(t) + 327° & 4°] (5.2)
_1.26 -2 4 "y -
=& X0 €2z sin [0(e) + ep,] - 232 1107%cE, sinfa(e)+el,]
Node :
1 -2 .
(2.73 £ 0.7)x10 * cos [o(t) + 291° + 13°) (5.3)
1"
o 0.24 =7 + -2 :
= - ==x10 2 ¢35 cos [o(t) + e;z] - 3;38 x10 2Cu2 cos [a(t)+et2]

where o(t) = 20 - 2M* - 2u* - 20%. @(t) is equal to 1 cycle/17.2 days.

The node and inclination histories were considered independently. Since
.each of the 100 pairs of inclination an& node values was the result of a
single orbit deéérminaﬁion, then it is possible for the element pairs to
bg highly correlated. Three typical correlation coéfficieﬁts from differ-

ent data reductions have been obtained from the Naval Surface Weapons

. Center (NSWC), Dahlgren, Virginia

-0.039

-0.036

These correlation coefficients are quite low. Therefore, using the
inclination and node data as if they were independent is justified. Unlike

1967-92A, the node rate on GEOS-3 is not small. Thus, the frequency of
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perturbations on GEOS-3 of the many tidal constituents will noﬁ have a
very long or secular trend. Table 9 gives the expected amplitude and
associéted frequency of the major tidal components. All these terms were
included in the least squares adjustment for the M; tidal components. An
unknown component with a 12.4-day period also had to be included in the

solution set.

Table 9.--Perturbations on the inclination and node of

GEOS-3 satellite due to ocean tides

Period Amplitude
Component Days Inclination Node Source

M, 17.2 006 0%03 Hendershott* (1972)

S, 103.9 "2 26 Bogdanov & Magarik
(1967)*

K, 66.23 — - —

0, 15.23 004 r01 Dietrich* (1944)

P, 482.12 a4l 2'5 . Felsentreger et al.
(1976)

Ky 132.45 v07 05 Dietrich* (1944)

* As given by Lambeck et al. (1974)

The rms of the fit to the inclination residuals was 0.02 arc seconds;

. the rms of the fit to the node residuals was 0.04 arc second. The fit of

the node is not expected to be as good'as the inclination. During each
two-day orbital reduction the set of all station longitudes must be modi-
fied for any disturbance in time. UTl corrections used in the data reductions

at NSWC - Dahlgren were not available for this study. Figure 10 shows the
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inclination residuals after removing all perturbations except for the MZ'
parameters plotted against ‘the recovered M, signal. The presence of the
M, perturbations is obvious. Table 10 gives a comparison of the recovered
M, amplitude and phase with the predicted values from the available numer-
ical tide models. Table 11 gives the GEOS-3 mean element data used in the

study.

5.4 Two Satellite Least-Squares Ocean Tide Solution

The resulting data reductions have made available three M, observation
equations for two harmonics - (2,2) and (4,2). Since more observation
equations are available than there are unknowns, and since uncertainties

are available for each observation, a weighted least-squares solution for

the tidal parameters is in order.

Given a linear relaéionship between a set of measurements Y and a solu-

tion state x

Y= Ax + n
E(n’) = 1 (5.4)

E(n) =0
Then the minimum-variance solution is the least-squares solution

- -l - _
x = ATz a1 taTrly (5.5)

The covariance matrices for the measurements I are available from the
individual data reductions for the amplitude and phase observations at the

M2 frequency. The actual amplitude and phase solutions were in terms of
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- amplitude times the sine and cosine of phase angle to avoid non-linearities.
The measurements corresponding to equation (5.4) are given in equations |
(5.1), (5.2), and (5.3). |

As previously indicated a value of ko and lag 6§, must be assuﬁed in order
to separate the ocean tide parameters. Taﬁle 12 gives tﬁe resu;ts obtained
when various values of k; and §; are used. The solutions appear to be
reasonable, especially when one considers that no other satellite derived

M, tidal parameters have been published to date.

These estimates are systematically smaller than the results obtained from
numerical solution of Laplace tidal equations presented in table 4. The
" quality of the results presented in table 12 can also.be judged by how well
the prediction of the evolution of the mean lunar longitude with these
estimates matches the observed retardation of the lunar mean motion. This

comparison is given in chapter 6.

Table 10 .--Amplitude and phase of inclination and node
perturbations due to the M; ocean tide on

GEOS-3 satellite

Inclination Node
Source Amplitude Phase Amplitude Phase
11 O 1] o
Observed : 0.040 327 0.027 291
11} 11]
Pekeris and Accad 0.051 339° 0.030 352°
"
Hendershott (Model 1) 0.061 317° 0.030 286°
11} . 11}
Hendershott (Model 2) 0.065 276° 0.025 244°
11 .
Bogdanov and Magarik 0.050 328° 0.049 290°
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Table 1i1. Mean Keplerian Elements (GEQS-3)

11969  114.98819341 1.43276068 339.71341705  200.93979283
012067  114.98814853 6.88261769  339.21306735  307.64073960
114.98720014 12.33238028  338.54803708 54.51068993
1146.98647234 17,.78204173  333.09357953  161.186644274
114.98620239 23.23177229  337.40865017  268.03v24759
114.98617641 28.681350700  336.94194945 14.72975061
012493 114.98692377 34.13161758  336.33790408  121.34223468
012595  114.98730920 59.58138736  335.79430251 228.2934997%
012670  114.98810342 45.03142703  335.29408762  333.00125308
012769  114.93819128 50.48163750  334.65691241 31.84970786

7219951.499
7219547.190
7219%69.216
7219%47.822
7219546.464
7219%48.89%
7219544721
7219548.457
7219%44.150

42639
42091,
2693,
42699.
2697
42699
42701
42703,
42708.
42707.

0000
-
NNNN
S AN -
P s
[_ XV I

7219546.349

-X-X-X-F-X-X-X-T-X-F-N-Z-¥-X-X-%-%-%-¥-%-7-X-T-¥-3
g o e s e - . v e
- -3-3-0-3-3-X-3-3-X-X-1-X-X-2-2-2-F-T-%-0-%-0-1

TINE A E 1 NODE PERIGEE "
(RJD) (RETERS) (DEGREES) (DEGREES) - CDEGREES) (DEGREES)
42323.0 7219574.686 0.0006832  114.99293425  274.48228311 48.61929980 65.350701482
42%527.0 7219576.837 0.0004961 114.99299087 279.93371283 67.00311446 173.27369786
42329.0 7219572.5%9 0.0005015  116.99397525  285.33499338 45.67152893  280.7603153%
42331.0 7219576.155 0.0005086 114.99463393  290.33616337 43.98767899 28.59823389
42333.0 7219372.073 0.0005164  114.99562206 296.238746373 42.78774799% 135.95201999
42335.0 7219574.238 0.0005218  114.99572688  301.73890939 41.13261257  243.76504650
42537.0 7219972.882 0.0005309 114.99561991  307.19041251  39.92174652  351.13032729
42539.0 7219371.436 0.0003362 1146.99518986 312.661961%9 38.47385703 98.73922242
62%61.0 7219573.570 0.0005659  114.99444588  318,09342861 37.17156580  206.19825897
42543.0 7219569.254 0.0005521% 114.99424180  323.54482439 36.01643110  313.51555560
42563.0 7219573.324 0.0005609  114.99391104 32899608398 36.56906609 61.12367634
42347.0 7219569.026 0.0005689  114.99455323  334.44735744 33.56860079 168.2851499¢
62969.0 7219571.735 0.0005757  116.99499185  339.89866631 32.09562306 275.92247787
42551.0 7219570.089 0.0005857  114.99546126  345.34998605 31.16074386 23.01769886
42593.0 7219569.198 0.0005918  114.99527682  350.801338¢8 29.89744636  130.44706930
42555.0 7219571.028 0.0006025 116.99428755 356.25255261 28.85059745  237.65336090
423357.0 7219566.935 0.0006091t 114.99347473 1.70360447 27.81741672  346.85485147
42559.0 7219570.864 0.0006136  114.99243843 7.15455516 26.55940009 92.27767135
42561.0- 7219566.453 0.0006269 114.99241018 12.60545494 25.74740318  199.25501034
42563.0 7219569.202 0.0006349. 114.99232789 13.05637785 26.49012208  306.68052504
42565.0 7219567.228 0.0006449  114.99270061 23.50728037 23.74031043 53.59642345
42567.0 7219566.576 0.0006518  114.99290526 28.95820738 22.59592000 160.90844077
42369.0 7219568.256 0.0006626 114.99266438 34.40898950 21.71228138 267.95642636
42571.0 7219564.737 0.0006697  114.99233141 39.85965449 20.78038771 15.05729127
42373.0 7219568.924 0.0006800 114.99111435 45.310061461 19.73728709  122.2672383+4
42575.0 7219564.693 0.0006883  114.99029696 50.76061229 19.04334251  229.12854989
42577.0 7219567.736 0.0006972  114.98933636 56.21082932 17.92948451 336.41355882
42581.0 7219565.131 0.0007151 114.98950686 67.11202591 16.18396703  190.49801949
42583.0 7219366.517 0.0007259  114.98968300 72.56250532 15.45389532  297.39468011
42585.0 7219562.9352 0.0007330 114.98984708 78.01280314 14.60623573 &b, 41364991
423587.0 7219566.869 0.0007433  114.98912932 83.46281261 13.72199271 151.466680914
62539.0 7219562.235 0.0007514  114.98365931 88.91273152 13.06162287 258.29730159
42391.0 7219565.456 0.0007605 114.98766943 94.36260605 12.03005923 $5.50110623
42593.0 7219562.910 0.0007699 114.98719724 99.81257147 11.4644166026 112.25827146
42395.0 7219563.112 0.0007776  114.98685618  105.2626811¢ 10.66170420 219.41243317
42397.0 7219564.318 0.0007877 114.98677245 110.71287301 9.831504641 326.21181984
€2599.0 7219561.383 0.0007950 114.98725815  116.16315081 9.01790348 73.19989689
42601.0 7219565.207 0.0003051 114.98739531 121.61327745 8.22776041 180.16154119
42603.0 7219560.770 0.0008132  114.98784634 127.06322070 7.58006815  286.98216955
62605.0 7219563.903 0.0008226 114.98740563  132.51298673 6.65241007 34.08449447
€2607.0 7219561.330 0.0008317  114.987004601 137.96281066 6.12958575  140.77918178
42609.0 7219561.501 0.0008403 114.98663920 143.461290433 5.21237410 267 .87383073
42611.0 7219562.539 0.0008504 114.98615356  148.86319629 6.65992836  354.59900950
€2613.0 7219559.279 0.0008583 116.98650998  154.31360724 3.84854139  101.58887292
42615.0 7219562.991 0.0003685 114.98672715  159.76391339 3.164780111  208.46499531
62617.0 7219558.319 0.0008763  114.98738191 165.21410779 2.52067087  315,.26937053
42619.0 7219561.978 0.0008358 116.98785328 170.66417906 1.70262960 62.266030C0
42621.0 7219559.025 0.00089+5  114.98834552  176.11419628 1.21418191 168.93067016
42623.0 7219560.034 0.0009032  114.98837432  181.56432407 0.35299262 275.97359348
42625.0 7219%60.722 0.0009130  114.98821867 187.01458102 359.85344985 22.65015953
42627.0 7219553.176 0.0009206  114.98816581.  192.46518683  359.04945093  129.63712208
42629.0 7219561.490 0.0009303  114.98780705 197.91601626  358.41607347  236.45048199
42631.0 7219356.846 0.0009377  114.98830480 203.36706358 357.78380139  343.26546799
42633.0 7219560.353 0.0009471 -114.98873567 208.81800609 357.0287880¢4 90.20469770
42635.0 7219557.094 0.0009553 114.98980396 214.26865890 356.53459240 196.38105583
42637.0 7219557.929 0.00096¢1 114.99038357  219.71923190  355.70262633  303.90058197
42639.0 7219558.150 0.0009732  114.99056390 225.16986256  355.19230573 50.59392884
42641.0 7219555.384 0.0009812  114.99053621  230.62079550  354.40690277  157.56847399
42643.0 7219558.731 0.0009909  114.98995538  236.0718592¢  353.83292007 264.32830313
42645.0 7219556.174 0.0009990  114.98992265  241.52302369  353.19614093 11.15390553
626467.0 7219558.299 0.0010088  114.98956967 246.97410239  352.49101333 118.04889695
42649.0 7219554.930 0.0010173  116.98995088 252.42502948 351.96192163  224.7662615%6
42651.0 7219556.446 0.0010265 114.99025898  257.87534338  351.15693013  331.76445972
42653.0 7219556.207 0.0010356 114.99078111  263.32649908 350.66055450 78.449246406
42655.0 7219553.725 0.0010639  114.99133581  268.77721182  349.39978055 185.40417145
42657.0 7219556.661 0.0010537  114.99115735  274.22795007  349.3734012)  292.12061960
42659.0 7219552.157 0.0010617  114.99087588 279.67890073  348.73838121 38.94399783
42661.0 7219556.043 0.0010716  114.98968717  285.12992038 3438.06106137  145.82048696
42663.0 7219352.319 0.0010793  114.98917904 290.58082233 347.51165009 252.56324225
42665.0 7219%553.739 0.0010383  1146.98893281 296.0314820¢ 346.76354688  359.50949362
42667.0 7219553.206 0.0010972  114.98929690  301.48185294  346.30913482 106.15706275
4$2669.0 7219551.080 011057  116.98985332  306.93219026 345.58549716 213.07952648
42671.0 7219554.080 011155 114.989858246  312.38248331  345.07322279  319.7862033%%6
42673.0 7219549.903 011235 114.98993469  317.83283716  144.42349082 66.63381446
42675.0 7219%53.957 0.0011334  114.98910507  323.28311257  343.30368210  173.45141768
42677.0 7219550.087 011515 114.98852222  328.73329415  343.28049751  280.1713191%
42679.0 7219551.873 0.0011510  114.98756363  334.18335273  342.59049522 27.06229016
42681.0 7219551.069 0.0011601  114.98700641  339,63322200  342.14420355 133.70484370
42683.0 7219%549.171 011687  114.986955352  345.08308746  341.63451214  240.616890648
42685.0 7219551.912 0.0011788 114.98713105  350.53290893  340.9274139% 347.3222833%
42687.0 7219547.539 0.0011869  114.98803872  355.98283404  340.29023296 94.16155739

.0 0

0

0

0

.0

.0

.0

0

g
42709.0 7219544.890 012835  114.9881123%% 95.93135320  334.22881743 138.48537352
42711.0 7219543.679 0.0012941 114.98773320 61.38123983  333.58350429  293.3449474%
42713.0 7219545.967 0.0013038  114.9870509% 66.8312%5635  333.15570082 41.938310880
42715.0 7219541.006 013113 1146.98703143 72.28147439  332.58274493  143.77170182
02717.0 7219%45.447 0.0013222  114.98704298 77.73198597  332.0701623%  233.49896307
42719.0 7219540.318 0.0013298  114.98802941 83.18268858  331.58632204 2.19746060
42721.0 7219543.336 0.0013397  114.98353830 83.6333257¢  330.99237426  109.00990879
4272%.0 7219341.471 0.0013473  114.9839%3142 94.03371801  330.53333570 213.63363336
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Table 12,~9cean tide coefficiemts obtained with

various values of solid tide parameters

Fixed : Adjusted
kp 82 C';z E*2.2 _ CTsz 6-:2
(cm) - (cm)

0.30 0° 3.23 331° .87 113°
.30 i 2.76 325° .87 113°
.30 1° 2.32 318° .87 117°
.31 0° 3.86 317° .98 110°
.31 %° 3.46 . 311° .98 110°
.31 1° 3.11 303° .98 110°
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6. LUNAR ORBIT EVOLUTION
Analysis of ancient lunar eclipse and modern transit data has revealed
a secular decay in the rate of change of the mean longitude of the Moon
or equivalently a secular increase in the lunar orbital period. Any
increase in the lunar period is reflected by an increase in the semi-major

' ' 1| 2 Moon
axis, since the period is equal to == .
’ ' 2r (G (mEa.rth + mMoon

total orbital emergy is equal to-*XgEarth + meon)/zaMoon’ the increase

k
| - Since the

in Ayon DeaNS that the Earth is transferring energy into the orbital
motion of the Moon. This increase is accomﬁanied by a decreage in the
rotation rate of the Earth as well as energy loss due to the friction in
the oceans and solid deformation. This orbital evolution of the Moon has
been studied by Kaula (1969) and Lambeck (1975). Kaula investigated the
effects of solid tidé; and Lambeck examined both solid and oceanic effects.

The mean motion of any orbit is given by

' 5
+
- [ s(m mSat)] 6.1

a

where M is Earth mass. Any secular decay in the satellite'smean motion
(or increase in orbital energy) can be found by differentiating (6.1)"

with respect to time

. 3 N .
N=- 3 (;) a. (6.2)

The next step is to substitute the appropriate solid or ocean potential
into Lagrange planetary equations to obtain an expression for a. From

chapter 4.0, the potential for the lunar solid tide attraction is
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. a-2<h 2+1 ( : )

Cm* - e\ e 2-m) !

80114 = T—FZ k (Ié 9 (o) T “m Famp D) Cppq(®
fmpqh '

(6.3)

)

* * *_
Fth(i ) Gzhj(e ) cos(v Ufszmpq

with v = (2-2p)wt(2-2p+q)MmQ
o* = (2-2h) 6t (- 20k )M Mme*

Remembering that a= ﬁ%-%ﬁg, equation (6.3) can be differentiated aﬁd then
substituted into (6.2). It is at this point that the satellite being
studied is chosen to be ﬁhe Moon. Thus, the Keplerian elements of the
disturbing body (Moon) and the Keplerian elements of the satellite have
the same value. That is, the Moon causes a deformation in the distribu-
tion of mass in the Earth which in turn affects the evolution of the lunar
orbit. Now that the orbital elements of the satellite and the disturbing

body are the same, the angular argument used in the aorVN equation is

—e - *
(2h-j-2p+q)M*+(2h-2p)w* + elmhj

Secular terms will occur when this angular argument contains only the

constant ¢ Thus, for secular solid tidal decay, p must equal h, and

2mhj °
q must equal j. da/dt is then given by.

3 = % *)12 - 3 5
a_1id 2 Bzm[Flmh(i ) Glhj(e )14 (2-2h+j) sin ezmhj
20+1 (6.4)
Al @ CENIN
™ (Gosmtial” (s)! Tm -

Combining all possible combinations of lmpghj, which would vield secular

da/dt terms, the numerical representation for the second degree contribution
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of solid tides to the orbital evolution of the moon is given as

Noo1id =~1040 kp sin 282 arc seconds/century?

where 6§, is the phase lag associated with the second degree harmonic.

Similarly the ocean tide potential

4mGa? 1+k! L . J-m even
AU = e E ( g,) (% ) C+ . W G © si .
n a 24+1 v nim = mp 2pq Y
™ ~cos Impq
-m odd
Y, = (Z-Zp)m+(z—zm)mm(sz-eﬁﬁ.gﬁ‘” (6.5)
fmpq nim '

can be used to model the secular acceleration of the lunar mean motion
due to ocean tides. As with the solid tide, this is accomplished by
substituting equation (6.5) into Lagrange planetary equations and setting
_th'e satellite elements equal to the lunar values. The equation of

interest is the da/dt equation

. ’p' (1-20+0) [cos] i-m even
a = =2p+q €

ocean nimpq . sin 4-m odd 2@

. (6.6)
' L .

: 36M AHt)) oy Bt F (D)% G, (e%)
B = —_ nim ~m ipq

nlmpq (GO *)a]% 22+1 p \a

where p is mean density of the Earth

) 2
The fourth-degree terms will experience a reduction of (1/60) compared to
the second-degree terms. Thus, only the second degree terms need be

considered. By far the dominant tide is the lunar M, (solar terms will

be periodic). Lambeck obtains contributions to Nmoon due to the N, and

2
01 ocean tide components of -~4.4 arc seconds/century which will be used
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here. No other ocean tide components affect the lunar mean motion in a
secﬁlar manner. Values of lunar elements can Be inserted into (6.6) with
fmpq = 2200 for the M; components to give

+ + '
=8.21 C}, cos (c},) 2Ecseconds (6.7)

ocean Mz century

The combined solid and ocean contributions yield the observation

equation

. | + +
N, = [-1040 ky sin (28;) -8.21 Cj, Cos(c2) :

(6.8)
arc seconds

-414
(N2+01) century :

Muller (1976) has performed an extensive analysis of ancient eclipsés and
modern transi% data (Morrison and.Ward 1976) and obtains -27.2 * 1.7 arc
seconds/century2 for the lunar N. The Morrison and Wara result is

-26.0 £ 2.0 arc seconds/century2 from transits of Mercury. Lapbeck evalu-

ated the lunar N using the mean of three numerical tide models

ocean M;
and obtained -35 * 4 arc seconds/centuryz. At that time the accepted
value of N was in the vicinity of =35 to =40 arc seconds/centuryz.
Lambeck's result seemed to agree with those receqt vélues; he concluded
with the following:

"We conclude with confidence that if not all, at least a very major
part of the secular change in the Moon's mean longitude, is caused by
dissipation of tidal energy in the oceans, and we do not have to invoke

significant energy sinks in the Earth's mantle or core.”
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In light of the recent evaluations of lunar N, the value of -35 % 4 arc

seconds/cencury2 would imply that the solid phase lag would be following
rather than leading the Moon.

Using .30 and 0° as nominal values of ko, and 85, respectively and the
Acean tide values calculated in this study from 1967-92A and GEOS-3 perturba-
tions, the value of N is - 27.4 *+ 3 arc seconds/centuryz, a value which is
in very good agreement with Muller, and Morrison and Ward. This result can
be used also to argue that the effect of the solid tide must be small.
Since the satellite-derived values of ocean tide parameters depend on what
solid-tide values are used, table 13 gives the different solutions when the
k, and lag angle are varied. Notice the consistency of ﬁtotal for various
combinations of ks and 85. It is seen that even if the lag angle is
changed by 0.50,.the resulting N changes by only 1 arC'second/centuryz.

J. T. Kuo of Lamont-boherty Geological Observatory (1977) analyzed data
from a network of tidal gravimeters placed along a parallel of latitude
across the United States and determined that‘the phase lag must be less

than 1.0°--another result which is in harmony with the above quoted values.

- Table 13.--Lunar N results with various values of ko, and lag

K2 8o C;Z 522+ 1:‘sol:Ld T, Nocean 5 I:‘tot:al 2
(cm) arc sec/ (100 yr)” arc sec/(l00yr)~ arc sec/(100 yr)
0.30 0o° . 3.2 328° 0 -27.4. -27.4
.30 %¥° 2.8 325 =5.4 -22.9 -28.4
.31 0° 3.9 317 0 -27.3 - ~27.3
31 %% 3.5 311 ~5.6 ~22.7 -28.3
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The explanation for the larger influence of the ocean tide compared to
the solid tide on the evolution of the mean longitude of the Moon can be
obtained by examining the phaée'angles of the solid and ocean contribu-
tions. As discussed earlier, the solid bulge of the Earth, due to the
attraction of'the Moon, will lead the Moon by approximately 1.0? or less.
The effective lead due to the oceans is found by subtracting Ezz from 90°,
so that the ﬁtotal given in equation (6.8) is expressed in terms of 2 sine

functions. Since the angular argument is proportional to frequency

(Darwinian assumption discusséd in chapter 4) the lead due to oceans is

oceans o o

829 - 50 2( 20°) _ 55°
Also, the.degree and order harmonic (2,2) physically represents an
equatorial ellipticity or the equivalent ocean tide bulge. Thus, even
though the direct attraction of the ocean tide is much smaller than the
solid tide, the resulting torque of the oceans generated by the large

55O lead actually dominates the behavior of the small secular decay in

the mean motion of the Moon.
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APPENDIX I.-—SOLID TIDE POTENTIAL IN TERMS OF DISTURBING

BODY'S ECLIPTIC ELEMENTS

Transforming from the equatorial coordinate system to the ecliptic can
be accomplished in two ways. The first would be the obvious technique of
converting the thr'ee coordinate dependent variables node, perigée, and
inclination of the body into ecliptic elements. The second technique,
and the one that is used here, is to rotate the surface harmonic terms
due to the disturbing body from the equatorial to the ecliptic system.
This methﬁd is not only direct, but also yields the potential in a form

that allows easy analysis of the fundamental frequencies. Returning to

Kaula (1962), one finds that

n , (at+l
Cm* < 2o e
AU(r) = e zkn = o Pn(cos S) ’

n=

whére starred quantities refer to the disturbing body , unstarred
quantities refer to the satellite, and S is the angle from disturbing body

to center of the Earth to the satellite, can be expressed as

a/a n+1 a
 ca® (_E)(% . (n-m)! A
8 = F\F\3 kn [Pn(sin $) Pn(51n $ )+2£Eé(n+m)! an(sin 3)
_ (I.1)
an(sin 8*) (cos ma cos ma* + sin ma sin ma*)]
where an is the associated Legendre function, § and §* are declination

of satellite and body, respectively; and o« and a* are right ascension of

satellite and body, respectively.

Since both (a,8) and (a*,5%) are in an Earth-equatorial system, it is
necessary only to transform the starred terms to the ecliptic. This

is a rather simple transformation, since both the ecliptic and equatorial
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systems have the x-axis in common. Let ¢ be the angle of rotation about
the x-axis from the equatorial plane to the ecliptic system (obliquity of
the ecliptic). Then any vector E;C whose components are known in the

ecliptic system can be expressed in the equatorial system by the matrix

relation
P =AP
e ec
where
1 0 0
A= 0 cos € —-gin ¢
0 sin € cos ¢
Let

Ynm(¢,k) = an(sin¢)exp(imk) (1.2)
be a surface harmonic of degree n and order m. Alternatively (I.2) can be
written as Ynm(¢;A) = an(sin¢)[cos'mA-Pi sin mA]

I . :
Yﬁm(tb,k) + Ym(¢,}\) i (1.3)

where R and I stand for real and imaginary components, respectively. (I.1l)

can now be rewritten as

: n, o+l
n
m:=9;C%@%_kn[sziﬁmm>ﬁmﬂw>+fwﬁ)fmﬁﬂﬂ]ﬁL“

m=0

Courant and Hilbert (1953) have provided the necessary formulas for
expressing any surface harmonic in a desired coordinate system as the

linear combination of surface harmonics in another system
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Y__(6,3) Z n-m)a 29 (5,0, IR

(1.5)

S§ﬁ’r)(p,o,r) = f;%;;j‘exp[-i(m+tkﬂ exp[-i(r-m)o] (cos T)m+r(sin 0t

Fgll’r) (cos2t)

ntr

d -

Fég’r)(x) -4 L0 (x_l)n+m
dx

where p, o, T depend on the rotation. For the particular rotation at
hand, the proper set of arguments are p=0, o=1/2, t=¢/2. (I.5) can now
be rewritten so that any linear factor on the right is expressed as a

product of a scale factor and rotation factor

n
Y o (4,1) = Y "’nz:(E/-Z) exp [-i(r-2) /2] Ym_(cb',l') (1.6)

=1}

The-wnlr values are rather easy to compute using equation (I.5). A
one might expect, the largest contribution occurs when r = ¢. For example,

the important Y,,(¢,1) term would be given as

Pyo(sing) exp(i2ir) = .17x1072 " Ppo(sing') exp(-2iA'")

+.33%10™2 exp(3mi/2) Ppy(siné') exp(-i')

~-.47 Pyo(siné')
=.76 exp(wi/2) P,y (sin¢') exp(ir')

+.92 . Po(siné') exp(2ir')
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where advantage has been taken of the relation

= (2132 (n=2)!
P, =« ;) (or0)! a2 &

Substituting (I.6) into (I.1l) and carrying on in the same fashion as

Kaula did yields results similar to his,

@ Ikl

e EEEEEEET

K
=2 m=0 p=0 q=-= k=-n h=0 j s+l m

% q J (1.7)
) ! ' , cos m-k even
( ! . , *
(ntm) ! anp(l) Fnlklh(1 ) anq(e) Gnhj(e ) p

. n-k .

(-1 si

Mok odd

p = (n-2p)uw+(n-2p+q)M+m- (n-2h+jIM*~(n-2h)w*-1k1Q*+sgn (k) (k-m)7/2 .

k (n=-1k!)!
Vo 1) ot f k<O
w* =
nmk
\wnmk if k>0

and now the starred variables refer to the ecliptic elements of the

disturbing body.
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